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A nominally two-dimensional spin model wrapped onto a cylinder can profitably be viewed, especially for
long cylinders, as a one-dimensional chain. Each site of such a chain is a ring of spins with a complex state
space. Traditional correlation functions are inadequate for the study of correlations in such a system and need
to be replaced with something like mutual information. Being induced purely by frustration, the disorder of a
cylindrical zero-temperature triangular Ising antiferromagnet (TIAFM) and attendant correlations have a chance
of evading the consequences of the Perron-Frobenius theorem which describes and constrains correlations in
thermally disordered one-dimensional systems. Correlations in such TIAFM systems and the aforementioned
evasion are studied here through a fermionic representation. For cylindrical TIAFM models with open boundary
conditions, we explain and derive the following characteristics of end-to-end mutual information: period-three
oscillation of the decay length, halving of the decay length compared to what Perron-Frobenius predicts on
the basis of transfer matrix eigenvalues, and subexponential decay—inverse square in the length—for certain
systems.

DOI: 10.1103/PhysRevE.105.044105

I. INTRODUCTION

Traditionally, probabilistic dependence among the elemen-
tary degrees of freedom in statistical mechanical models is
studied by means of correlation functions. This is natural on
a regular lattice of any dimension. However, a spin model
wrapped on a cylinder with a length much greater than its
circumference is also naturally viewed as a one-dimensional
chain, except that the elementary constituents at the sites of
the chain are rings of many spins each having many internal
states:

How do we measure the probabilistic dependence among
these constituents? Mutual information [1–4], which has been
of increasing interest in classical statistical mechanics [5–7],
as well as quantum information theory [8], is a good an-
swer. Mutual information precisely quantifies dependence
between two random variables of arbitrary complexity. In this
paper, we apply this information-theoretic tool to the zero-
temperature triangular lattice Ising antiferromagnet (TIAFM)
model on cylinders, giving details of results which were
briefly reported in a previous publication [9], thoroughly
explaining some curious phenomena observed in numerical
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experiments. The TIAFM is an archetype of frustration—
the presence of incompatible but equally strong elementary
interactions. The importance of understanding frustration-
induced disorder is indicated by the enormous range of
systems in which it occurs, from water ice [10,11] to spin
systems [12–17], artificial spin ice [18–20], colloidal as-
semblies [21,22], Coulomb liquids [23], lattice gases [24],
ferroelectrics [25], coupled lasers [26], and self-assembled
lattices of microscopic chemical reactors [27].

The frustration-induced disorder of the zero-temperature
TIAFM on a cylinder superficially resembles thermal disor-
der, but with a subtle and important difference. Correlations in
thermally disordered one-dimensional systems are described
by the Perron-Frobenius theorem [28–32]. Behavior of the
cylindrical TIAFM is incompatible with what that theorem
describes in a variety of ways, in particular in the rate with
which the mutual information between configurations at the
ends of a long cylinder with open boundary conditions falls
off with cylinder length. Whereas the Perron-Frobenius be-
havior is a decay length 2 ln |λ1/λ0|, where λ0 and λ1 are
the two largest eigenvalues of the transfer matrix, TIAFM
cylinders show a decay length half this, except in cases where
the mutual information does not even fall off exponentially,
but only as the inverse square of the length. In addition,
the decay length oscillates with circumference with a pe-
riod of three. This last feature is not incompatible with the
Perron-Frobenius scenario, but it is strange, and its elucida-
tion, as we shall see, is bound up with that of the features
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which are so. Vis-à-vis violation of the Perron-Frobenius
scenario, the point of frustration is that it provides a kind
of disorder which might lead to such behavior. Interesting
analogs of the phenomena studied in this paper might also be
found in dynamical systems, where the Perron-Frobenius the-
orem has a significant role [33] with time taking the place of
the spatial dimension considered here, or possibly in systems
displaying phyllotaxis-like phenomena [34].

Section II reviews transfer matrices, the Perron-Frobenius
theorem, and its significant consequences, indicating how
the zero-temperature cylindrical TIAFM deviates. Section III
demonstrates the equivalence of the zero-temperature TIAFM
with a fermionic model, constructs the transfer matrix in the
fermion language, and works out some of its spectral proper-
ties. Section IV works out the crucial connectivity properties
of the configuration space under powers of the transfer ma-
trix, and asymptotic behavior of matrix elements. Section V
returns to the Perron-Frobenius scenario, giving a thorough
discussion of mutual information in that setting, exposing
“normal” behavior under conditions of thermal disorder. Fi-
nally, Sec. VI works out details for the asymptotic end-to-end
mutual information of TIAFM cylinders, explains the period-
three oscillation of decay rate by a very prosaic fact about
energy gaps in systems of free fermions and the inverse-square
decay by the presence of zero-energy fermion modes, and
shows how to the data-processing inequality gives easy eval-
uation of decay rates. Comparison of the asymptotic results
with exact numerical calculations shows that a length only
about twice the circumference is already in the asymptotic
regime. We have labeled some results Proposition or Lemma.
This should not be understood as indicating relative level of
mathematical rigor or importance (though Proposition IV.1
is certainly important). Rather, it is an organizational device,
used when convenient, which facilitates reference and aids the
reader who wishes to skip technical proofs by clearly marking
out their beginnings and endings.

II. THE PERRON-FROBENIUS SCENARIO

A. Transfer matrices

Transfer matrices are a basic tool [35] of statistical me-
chanics. Their use is brought to a high art in the study of
solvable two-dimensional models [36], where one takes the
limit of both dimensions tending to infinity. Here, we stay with
the one-dimensional case. To fix ideas, consider the simple
Ising chain of length L. The spins s1, . . . , sL take values in
the configuration space X = {−1,+1}, and the energy of the
chain is

E (s) = −J
L−1∑

n=1

sn+1sn − h
L−1∑

n=1

sn. (1)

Then, defining the quantities

Ts′s = eβ(Js′s+hs), (2)

indexed by elements of X , the partition function with fixed
boundary conditions s1, sL ∈ X can be written

Z (sL|s1) =
∑

sL−1,...,s2

e−βE (s) =
∑

sL−1,...,s2

TsL,sL−1 · · ·Ts2s1 .

τ
τ+1

τ+2

FIG. 1. Part of an unrolled TIAFM cylinder. The thick black
bonds go around the cylinder circumference (see also Fig. 2).

Taking Tss′ as components of a matrix
(

eβ(J+h) eβ(−J+h)

eβ(−J−h) eβ(J−h)

)
, (3)

the partition function becomes simply

Z (sL|s1) = (T L )sLs1 . (4)

Naturally, we are inclined to think of T now as a lin-
ear operator on a free vector space over X , or (better) on
a Hilbert space H(X ) with orthonormal basis {|s〉|s ∈ X }.
Nothing stops us from so doing, but we should pause to ask
whether the vectors in H(X ) are physically meaningful, that
is, in the original statistical mechanical context. Some of them
are. Consider for instance

|1̄〉 := |−1〉 + |+1〉. (5)

The partition function with open boundary conditions is
〈1̄|T L|1̄〉. More generally, any linear combination of |−1〉
and |+1〉 with nonnegative coefficients represents a (possibly
unnormalized) probabilistic mixture, with a clear statistical
mechanical meaning.

Figure 1 shows a bit of a cylindrical TIAFM system, un-
wrapped. The details of an appropriate transfer matrix method
for this at zero temperature are different from the simple
Ising chain, though the spirit is the same. The role of sites
is played by the circumferential rings of bonds, and the
configuration space X is now the space of all bond config-
urations (satisfied/unsatisfied) on such a ring. Configurations
of the noncircumferential bonds are implicit in the transfer
matrix T .

At zero temperature, the partition function should simply
count ground microstates, once the ground-state energy is set
to zero by addition of a constant. However, for a ring-to-ring
transfer matrix to exist, the property of being a ground mi-
crostate needs to be appropriately local. This is the role of
making our cylinders from rings of down-pointing triangles
( ). That ensures that every bond is in one and only one ,
and the ground microstates are precisely those in which each

has two satisfied bonds. In turn, this ensures the existence of
a ring-to-ring transfer matrix; Sec. III constructs it explicitly.

B. Perron-Frobenius Theorem

An appropriate general abstract setting in which to con-
sider both the zero-temperature cylindrical TIAFM and the
systems to which it will be contrasted, is a chain of sites, site
i hosting the configuration variable Xi taking value in some
finite set X . The partition function might be a matrix element
of T L (fixed boundary conditions), a sum of matrix elements
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(open boundary conditions), or the trace (periodic). As before,
it is convenient to identify X with an orthonormal basis in
Hilbert space H(X ), so that the transfer matrix becomes a
transfer operator.

1. The theorem

By nature, the entries of the transfer matrix T are nonneg-
ative in the X basis, since they represent statistical weights.
The Perron-Frobenius theorem addresses the situation where
it has the stronger property

PF: There is an N , such that every element of T n is strictly
positive when n ! N .

This says that, regardless of the configuration at a given
site, at any site sufficiently far away, any configuration can
occur. One generally expects this condition to hold for a dis-
ordered system, and it certainly holds at nonzero temperature.

Theorem II.1 (Perron-Frobenius). When the condition PF
holds, T has a unique eigenvalue λ0 of largest modulus, which
is nondegenerate (real) and greater than zero. Also, every
component of the associated left or right eigenvector is strictly
positive with appropriate choice of overall phase.

For a proof, see, for example, Proposition 5.6.3 of
Ref. [31], or Theorem II.5.1 of Ref. [32]). The theorem im-
plies that T can be written as

T = λ0(Q0 + S), (6)

with the following characteristics:
(1) Q0 is a rank-one projection (generally nonorthogonal),

hence can be written as

Q0 = |e0〉〈θ0|, 〈θ0|e0〉 = 1. (7)

(2) ∀x ∈ X , 〈e0|x〉 > 0, 〈θ0|x〉 > 0.
(3) SQ0 = Q0S = 0.
(4) The spectral radius of S is |λ1|/λ0 < 1, where the

subleading eigenvalue(s) of T have modulus |λ1|.
Generally, we cannot assume that T is hermitian; one must

be on alert against ingrained habits attuned to that case.
We will be interested in asymptotics as the separation L

between sites of a chain system (possibly the ends) tends to
infinity, and therefore establish some convenient notation now.
We use f (L) ! g(L) as a synonym for Landau big-O: f =
O(g) when | f (L)/g(L)| is bounded for large enough L. This is
more convenient than O when the expression for g is long, and
includes the case f = o(g), when the bound can be taken as
small as desired. If f ! g and f " g, then we write f ∼ g, as
is common notation in the physics literature. Finally, f (L) ≈
g(L) means that | f (L) − g(L)| = o(g).

2. The PF scenario

Now we list some implications of the Perron-Frobenius,
which we collectively and somewhat loosely refer to as the
Perron-Frobenius (PF) scenario.

(1) For all x, y ∈ X ,

〈y|T L|x〉 ≈ λL
0 〈y|Q0|x〉 > 0. (8)

(2) Regardless of boundary conditions, in the thermody-
namic limit there is a unique bulk state and its free entropy
density lim L−1 ln Z is equal to ln λ0.

(3) In the thermodynamic limit, and for site 0 in the bulk
(i.e., the ends recede infinitely far from that site in the limit),

〈 f (X0)〉 =
∑

x∈X
f (x)〈x|Q0|x〉. (9)

(4) In both the cases that sites 0 and L are in the bulk of an
infinite system, or they are the end sites of a chain with open
boundary conditions, the connected correlations obey

〈 f (X0); g(XL )〉 := 〈 f (X0)g(XL )〉 − 〈 f (X0)〉〈g(XL )〉

! q(L)
( |λ1|

λ0

)L

,

where the subleading eigenvalue(s) of T have modulus |λ1|.
q(L) is a polynomial; this complication is needed in case
some |λ1| eigenspace has algebraic multiplicity greater than
its geometric multiplicity.

The preceding aspects are widely known. We add a formula
for the asymptotic behavior of mutual information between
the configurations on sites X0 and XL. (Mutual information
will be reviewed in Sec. V)

(5) With sites 0 and L again either in the bulk or the
ends of a chain with open boundary conditions, the mutual
information between their configurations obeys

I(X0 :XL ) ! q(L)
( |λ1|

λ0

)2L

. (10)

C. Oddities of the zero-temperature cylindrical TIAFM

It is common for a one-dimensional system to violate the
hypothesis of the Perron-Frobenius theorem, at zero tempera-
ture. However, the result is usually a very simple situation in
that there are a few ground states, e.g., for the simple Ising
chain, all spins up or all spins down. The cylindrical TIAFM
differs by exhibiting disorder which looks very similar to
ordinary thermal disorder. It is therefore a priori plausible that
the Perron-Frobenius scenario applies. Of course, there is a
local constraint (each has exactly two satisfied bonds), but
it would be a mistake to jump to conclusions from that. Con-
sider, for instance, a clock model with an antiferromagnetic
interaction, allowed directions for the spins being spaced by
15◦. Imposing the constraint that neighboring spins can differ
by at most 30◦ makes no qualitative difference.

(1) There are multiple bulk states in the thermodynamic
limit. They are labeled by the number N of satisfied bonds
on each circumferential ring, and have differing entropy den-
sities.

(2) In each such bulk state, connected correlation func-
tions and ring-to-ring mutual information behave as in items
4 and 5 above, but the relevant eigenvalues are a subset of
those for the full transfer matrix T , specific to N . All the
eigenvalues of T are relevant for end-to-end correlations,
however.

(3) Despite that normal aspect of end-to-end mutual infor-
mation, it behaves very peculiarly in other respects:

(i) If the circumference is a multiple of three and N
is odd, then the end-to-end mutual information decays not
exponentially, but as L−2.

(ii) In other cases, the exponent 2L in Eq. (10) is re-
placed by L.

044105-3



NOURHANI, CRESPI, AND LAMMERT PHYSICAL REVIEW E 105, 044105 (2022)

τ = 0
τ = 1

τ = 2

1        2        3       4        5        6       7        8    

FIG. 2. On this diagram of a cylindrical system, there are four strings. In the fermionic picture, there are five fermions at time 0. The
doubling back of one string between τ = 2 and τ = 3 is interpreted as annihilation of a pair of fermions.

(iii) On top of a general increase with circumference,
the rate of decay oscillates with period three.
These aspects are all somewhat interrelated. In fact, the

period-three oscillation for even-N systems has no direct
relation to violation of the Perron-Frobenius condition, but
we need to uncover the whole story to see that clearly. In
the following sections, we will construct a very convenient
fermionic representation of the transfer operator, and use it
to explain these features. The coefficient for the end-to-end
mutual information will be calculated, and shown to agree
with direct numerical calculations.

D. Non-Perron-Frobenius in general

As before, consider a chain of sites with a finite single-site
state space X and transfer matrix T . We introduce a relation
of mutual reachability: For Y,Y ′ ∈ X , if there is some N such
that both 〈Y ′|Tm|Y 〉 and 〈Y |Tm|Y ′〉 are nonzero whenever
m ! N , Y and Y ′ are mutually reachable, denoted Y ∼ Y ′.
This relation is evidently an equivalence relation, so X is
partitioned into equivalence classes {Xα} of mutually reach-
able states. In graph theory terminology, these equivalence
classes are strongly connected components. The directed graph
G with these components as nodes and a directed edge from
Xα to Xβ when 〈Yβ |T |Yα〉 for some Yα ∈ Xα and Yβ ∈ Xβ

is directed acyclic (there is no directed path from any node
back to it). The Perron-Frobenius condition holds when the
graph has only one node. As mentioned in Sec. II B, ther-
mal disorder always produces this case. The graphs G for
zero-temperature TIAFM cylinders have one of the simplest
nontrivial structures: nodes correspond to the number N of
satisfied circumferential bonds, and T connects a state only
states with a lesser or equal value of N . Frustration pro-
vides the nonthermal disorder making this possible. Since the
cylindrical TIAFM can be studied in great detail through the
fermionic representation, it is a good model system for this
sort of non-Perron-Frobenius behavior.

III. CONSTRUCTION OF TRANSFER MATRIX FOR T = 0
CYLINDRICAL TIAFM

We construct the transfer matrix T for the zero-
temperature cylindrical TIAFM in three stages [9]: See how
to represent bond configurations by string diagrams, identify
the elementary processes of which they are composed, and
find appropriate fermionic representations of those processes.

We work with configurations of satisfied and unsatisfied
bonds rather than directly with spins. The simple two-to-one

correspondence between spin and bond configurations means
there is no loss in doing so. In a system composed of ’s
(see Figs. 2 and 3), ground states are all and only those bond
configurations with exactly two satisfied bonds on each ,
with one caveat to be removed in the next paragraph. To
convert a bond configuration into a system of strings, mark
a perpendicular across each satisfied circumferential bond
(horizontal in the figures) and across each unsatisfied noncir-
cumferential bond (diagonal), as illustrated at the left in Fig. 2.
The only motifs allowed in a are , , and the empty
motif . corresponds to zero satisfied bonds, ruled out by
the ground-state constraint, and anything else is topologically
impossible. It is very natural to interpret these pictures as
a sort of spacetime diagram (Fig. 3) with the strings being
worldlines of particles. These particles are conserved, except
for the events depicted as , which represents annihilation of
neighboring particles.

For the ordinary TIAFM, there must be an even number
N of satisfied bonds along any circumferential loop, because
these correspond to spin flips. Therefore, systems with odd
circumference C are circumferentially frustrated. We are go-
ing to decouple the frustration status of circumferential loops
from the parity of C. The important point is that a triangle with
one antiferromagnetic bond is precisely as frustrated as one
with three such. If all bonds crossed by a string running the
length of the cylinder are changed from antiferromagnetic to
ferromagnetic, then this alters none of the local characteristics
but reverses the frustration status of circumferential loops.
Allowing this variant, the parities of N and of C become
independent.

A. Particle-conserving submodel

To construct the transfer matrix, we will first ban pair anni-
hilation, work out a fermionic representation for the resulting
particle-conserving submodel, and restore pair annihilation in
the following subsection.

x

τ

τ
τ

τ

=0

=1

=L

x=
1

x=
2

x=
C

FIG. 3. Spacetime interpretation of a string diagram.
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The nature of our particle worldlines is such that they
cannot intersect. To implement this constraint automatically,
we take the particles to be fermions. The configuration
X = (x1, . . . , xN ) is the locations of satisfied circumferen-
tial bonds, in ascending order: 1 " x1 < x2 < · · · < xN " C.
This configuration is identified with the fermion Fock space
vector

|X 〉 := c†
x1

· · · c†
xN

|∅〉. (11)

The particle preserving transfer matrix T0 is determined by
the conditions

T0|∅〉 = |∅〉, T0c†
x = (c†

x−1 + c†
x )T0, (12)

the point being that a particle at x at time τ can be at either x
or x − 1 at time τ + 1 (see Fig. 3). In k space, the condition
Eq. (12) translates to

T0c(q)† = C−1/2
∑

x∈ZC

eiqxT0c†
x

=
(

2 cos
q
2

)
eiq/2c(q)†T0. (13)

This is solved by

T0 = eiP/2e−H0 , (14)

where

H0 =
∑

q∈BZ

ε(q)n(q), P =
∑

q∈BZ

q n(q), (15)

have the interpretation of a Hamiltonian and total momen-
tum operator, respectively, and BZ [see Eq. (17)] stands
for allowed momentum values in the Brillouin zone. n(q) =
c(q)†c(q) counts the number (0 or 1) of fermions in the mode
of momentum q with energy

ε(q) = − ln
(

2 cos
q
2

)
. (16)

The allowed fermion momentum modes depend on the
parity of the number of particles N , and are given by

BZ =
{ 2π

C Z ∩ (−π ,π ], N odd,

2π
C

(
Z + 1

2

)
∩ (−π ,π], N even.

(17)

1. Zero-energy modes

The zeros of the dispersion relation ε(k) are k = ± 2π
3 . Ac-

cording to Eq. (17), the systems for which those momenta are
in BZ are precisely those with C ∈ 3Z and odd N . Systems
with zero-energy modes turn out to behave very differently
from others and will generally require separate treatment in
the following.

2. Eigenvectors

T0 is a hermitian operator, so its eigenvectors comprise
a complete orthonormal basis. The eigenvectors have a very
simple nature; they are constructed simply by occupying some
particular set of k-states, subject to the parity constraint on
N . [We speak in the singular, implicitly referring to systems
with some particular circumference C, and N parity (even or
odd)]. We will follow two different conventions for labeling

eigenvalues and eigenvectors, as convenience dictates. The
first way is

T0|ϕi〉 = λi|ϕi〉, (18)

where the eigenvalues are in descending order |λ0| ! |λ1| !
· · · . (We will never have any significant need to handle de-
generacies systematically.) The other convention is to specify
the particle number and order the eigenvalues of all N-particle
states:

T0|ϕN,i〉 = λN,i|ϕN,i〉, (19)

T0 =
∑

i

λi|ϕi〉〈ϕi|, (20)

with |λN,0| ! |λN,1| ! · · · . Eigenstates of T0 are also eigen-
states of P, which is why the factor eiP/2 is not very important.
In fact, the important eigenvectors for asymptotic properties
are the ϕN,0. These are just filled Fermi seas of a density
depending on N , and they have P = 0. As N increases, λN ,0
first increases monotonically, while modes of negative energy
are being filled, then decreases monotonically. The number

N0 := |{k ∈ BZ|ε(k) " 0}| (21)

of nonpositive energy modes is important. λN0,0 is the largest
eigenvalue λ0 of T0. If there are no zero-energy modes, then
it is nondegenerate; otherwise, λN0−2,0 = λN0,0.

B. Pair annihilation

Figure 2 depicts a single pair annihilation event. The trans-
fer matrix “chooses” how the configuration will evolve from
time τ to time τ + 1. And that can be understood as proceed-
ing in two steps: first, select neighboring pairs for annihilation,
then move or leave in place the remaining particles. This
annihilation step is implemented by the operator

Tpr =
∏

i∈ZC

(1 + ci+1ci ), (22)

which selects neighboring pairs in all possible ways from the
ring. Note that the operators in the product commute with each
other, so it is unambiguous. Since the operators ci+1ci square
to zero, 1 + ci+1ci = exp(ci+1ci ). And, since they commute
with each other, Tpr =

∏
i eci+1ci . Applying commutativity

again produces Tpr = e−Hpr , where

Hpr = −
∑

i

cici+1 =
∑

0<q∈BZ

2i(sin q) c(−q)c(q) (23)

after Fourier transformation. The exponentiated expression
e−Hpr re-expands to

Tpr =
∏

0<q∈BZ

[1 + 2i(sin q) b(q)], (24)

where

b(k) := c(k)c(−k) (25)

destroys a pair of fermions. The complete transfer matrix is
then

T = T0Tpr = eiP/2e−H0 e−Hpr . (26)
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Now, P commutes with H0 and b(k), but b(k) does not
commute with T0. Instead,

b(k)T0 = e−2ε(k)T0b(k). (27)

Evidently, zero-energy modes are special, since b( 2π
3 ) com-

mutes with T0, whereas the other pair annihilation operators
do not.

1. Case: No zero-energy modes

When there are no zero-energy modes, we use Eq. (27) to
write T as a similarity transformation of T0. Since

[1 + αb(k)][1 + βb(k)] = [1 + (α + β )b(k)], (28)

for any complex α, we have

T0[1 + αb(k)] = [1 + α̃b(k)]T0[1 − α̃b(k)]

= [1 + α̃b(k)]T0[1 + α̃b(k)]−1, (29)

where

α̃ = α

e−2ε(k) − 1
. (30)

Using this observation, we can write the full transfer matrix
as

T = B(eiP/2T0)B−1, (31)

with the definitions

B :=
∏

0<q∈BZ

[1 + iη(q)b(q)], (32)

and

η(k) := 2 sin k
e−2ε(k) − 1

. (33)

2. Eigenvectors

Corresponding to the eigenvector |ϕi〉 of T0, with eigen-
value λi, T has a right eigenvector

|ei〉 = B|ϕi〉 =
∏

0<q∈BZ

[1 + iη(q)b(q)]|ϕi〉 (34)

and a left eigenvector

|θ i〉 = B−†|ϕi〉 =
∏

0<q∈BZ

[1 − iη(q)b(q)]|ϕi〉, (35)

with the same eigenvalue [B−† is short for (B†)−1]. B removes
(k,−k) pairs in all possible ways, with varying weight; B−†

adds them.
These satisfy the biorthogonality relation

〈ei|θ j〉 = δi j, (36)

so that we can also write the transfer matrix as

T =
∑

i

λi|ei〉〈θi|. (37)

We can also write this in the form Eq. (38) introduced in
Sec. II:

T = λ0(Q0 + S), (38)

where Q0 = |e0〉〈θ0| and S has spectral radius less than one.
In contrast to the Perron-Frobenius scenario, however, it is

not the case that 〈y|Q0|x〉 > 0 for all y and x. This is dis-
cussed later, and is very important for the behavior of mutual
information.

3. Case: Zero-energy modes

As noted in Sec. IIIA1, the system has zero-energy modes
k = 2π

3 exactly when N is odd and C ∈ 3Z. b( 2π
3 ) commutes

with T0, as well as with P and all the other b(k)’s. We cannot
deal with them in the same way as the others. If we temporar-
ily hold them in reserve and write

B :=
∏

0<q∈BZ
ε(q) +=0

[1 + iη(q)b(q)], (39)

and

T̃ = B(eiP/2T0)B−1, (40)

then the full transfer matrix can be written as

T = T̃ (1 + A0) = (1 + A0)T̃ , (41)

where

A0 := i
√

3 b
(

2π

3

)
. (42)

While the situation is in certain respects more complicated
than for systems without zero-energy modes, there are some
compensations: A0 commutes with T and squares to zero.
Therefore T L = T̃ L(1 + LA0).

We can construct a biorthogonal system of eigenvectors for
T̃ just as was done for systems without zero-energy modes:

|̃ei〉 = B|ϕi〉, |̃θi〉 = B−†|ϕi〉. (43)

Then,

T |̃ei〉 = (λi + A0)|̃ei〉, (44)

and

T =
∑

i

(λi + A0)|̃ei〉〈̃θi|. (45)

Eigenstates |ϕi〉 of T0 can be classified according to
whether the number of occupied zero-energy mode is one
(annihilated by A0 and A†

0), zero (annihilated by A0 but not A†
0)

or two (annihilated by A†
0, but not by A0). This classification

survives the passage to |̃ei〉 and |̃θi〉 because B does nothing to
the zero-energy modes. Every eigenvector of T̃ with no zero-
energy modes has a partner with two, and they belong to the
same eigenvalue. However, the vectors with both zero-energy
modes occupied are not eigenvectors of the full transfer matrix
T . Indeed, it is not diagonalizable.

IV. STATES OF LONG TIAFM CYLINDERS

A. Bulk states of particle-conserving submodel

The particle-conserving submodel, T0, fails to satisfy
the Perron-Frobenius condition rather trivially. Since T0
commutes with particle number N , which is also the num-
ber of satisfied circumferential bonds, T L

0 can never connect
configurations x and y if N (y) += N (x). However, there is an
equally trivial fix: restrict to the subspace XN of configurations
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with N particles, for some fixed N . By use of the string repre-
sentation, it is easy to see that for any x, y ∈ XN , 〈y|T L

0 |x〉 > 0
for all L large enough. The full Perron-Frobenius scenario
is recovered for this restricted model: connected correlations
decay as (|λN,1|/λN,0)L, and so forth.

Now, consider a finite cylinder with open boundary condi-
tions. The partition function is 〈1̄|T0|1̄〉, where, recall,

|1̄〉 =
∑

x∈X
|x〉.

Since we are working in the particle-conserving submodel, ev-
ery allowed configuration of the cylinder has the same number
of particles N at every point along the length. Writing

〈1̄|T L
0 |1̄〉 =

∑

N,i

〈1̄|ϕN,i〉λL
N,i〈ϕN,i|1̄〉, (46)

we see that, as L → ∞, the partition function is dominated by
configurations with N∗ particles, where λN∗,0 is largest possi-
ble. This value is unique and equal to N0, except for systems
with zero-energy modes, in which case λN0−2,0 = λN,0.

B. A-expansion

The full model is much more complicated, and some cru-
cial information is to be obtained by developing a view of the
long cylinder and its partition function which does not work
directly with the eigenvectors |ei〉 and |θi〉. Instead, decom-
pose the pair annihilation part Tpr of T given in Eq. (22) or
Eq. (24) as

Tpr = 1 + A. (47)

Here, A removes one or more pairs of particles. Then, T =
T0(1 + A) and T L is expanded as

T L = T L
0 +

∑
T L2

0 AT L1
0 +

∑
T L3

0 AT L2
0 AT L1

0

+ · · · +
∑ {

terms with 0C
2 1 A’s

}
. (48)

The restrictions on the Li are that: they must add up to L and
only the first or last is allowed to be zero. In brief, at each
“time step,” there is a choice to annihilate some pairs, or not.
The main point is that there is a strictly limited number of A’s,
so they must become sparser and sparser on average as L →
∞. The regions between them are characterized by constant
values of N , dropping by two at each A. Such a region of
constant N looks like the corresponding bulk state of the N -
conserving submode.

This way of looking at matters is very helpful in deducing
the large-L asymptotics of the partition function 〈y|T L|x〉 for
fixed boundary conditions x and y at the top and bottom of
the cylinder, with N (y) " N (x), as given in the following
Proposition. States with N in the interval [N (y),N (x)] are
accessible, and as L → ∞, the bulk will be in the fixed-N
phase which maximizes the entropy density.

Proposition IV.1. If N (y) > N (x), then 〈y|T L|x〉 = 0.
Otherwise, 〈y|T L|x〉 > 0 for all sufficiently large L, and the
following cases obtain:

Without zero-energy modes,

〈y|T L|x〉 ≈ 〈y|eN∗,0〉〈θN∗,0|x〉λL
N∗,0, (49)

where N∗ is the value of N in [N (y),N (x)] which maximizes
λN∗,0. Explicitly,

N∗ =






N0 N (y) " N0 " N (x),
N (x) N (y) " N (x) " N0,
N (y) N0 " N (y) " N (x).

(50)

With zero-energy modes, the preceding holds except in the
case N (y) " N0 − 2 < N0 " N (x). For such y, x,

〈y|T L|x〉 ≈
〈
y
∣∣̃eN0−2,0

〉〈̃
θN0,0

∣∣x
〉
LλL

N0,0, (51)

Proof. That 〈y|T L|x〉 = 0 when N (x) < N (y) is clear,
since T cannot add particles.

The A-expansion shows that for L′ large enough, there is
some z ∈ XN (y) with 〈z|T L′ |x〉 > 0. Since T acts irreducibly
on XN (y), also 〈y|T L′′ |z〉 > 0 for sufficiently large L′′. There-
fore, L ! L′ + L′′ will guarantee that 〈y|T L|x〉 > 0.

Now, with top and bottom boundary conditions fixed at
x and y, as L → ∞, the partition function is dominated by
configurations where the bulk has the allowed particle number
[between N (y) and N (x)], which maximizes entropy density,
namely, N∗. This shows that 〈y|T L|x〉 ∼ λL

N∗,0. Equation (49)
follows immediately, since

〈y|T L|x〉 =
∑

N,i

〈y|eN,i〉〈θN,i|x〉λL
N,i.

For a system with zero-energy modes, the essentially new
case is N (y) " N0 − 2 < N0 " N (x). With the A-expansion
picture, we see that the bulk of they system will be dominated
by the N0 “phase” or the N0 − 2 phase. These have the same
entropy density, so a transition from N0 to N0 − 2 comes at
no penalty of entropy density, but can occur at any of L
locations. Hence, 〈y|T L|x〉 ∼ LλL

0 . Now we make the same
kind of comparison as before, using T L = T̃ L(1 + LA0) and
A0̃eN0,0 = i

√
3̃eN0−2,0:

〈y|T L|x〉 = 〈y|(1 + LA0)T̃ L|x〉

=
∑

N,i

〈y|1 + LA0 |̃eN,i〉〈̃θN,i|x〉λL
N,i. (52)

#

V. MUTUAL INFORMATION IN THE
PERRON-FROBENIUS SCENARIO

Traditional one- and two-spin correlation functions tell us
everything there is to know about the distribution of a sin-
gle spin conditioned on the value of one other. For complex
random variables, such as a bond configuration on a circum-
ferential ring, dependencies can be much more difficult to pin
down. Mutual information provides a measure of the depen-
dence in such situations. It does not characterize the nature
of correlations, ferromagnetic versus antiferromagnetic, for
example, but neither does it require insight into that nature.
Correspondingly, it cannot miss anything we did not know
to look for; it is in that sense a complete measure. Another
important property of the mutual information which is not
shared by ordinary correlation functions is reparametrization
invariance. The mutual information I(Y :X ) between random
variables X and Y is the same as that between X and Y ′ = 3Y
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or Y ′ = Y 3; invertible transformations of the ranges have no
effect.

Section V A is a quick review of important information
theory concepts [1–4]. Section V B relates mutual information
to the more traditional tool of connected correlation func-
tions and gives a basic abstract estimate. Asymptotic formulas
for ring-to-ring and end-to-end mutual information in the
Perron-Frobenius scenario are worked out Secs. V C and V D,
respectively. The details of the formulas in these sections will
not be needed later. It is primarily the qualitative behavior
that we wish to contrast with that of the zero-temperature
cylindrical TIAFM.

A. Generalities about mutual information

The entropy of a discrete random variable Y is given by

H (Y ) = −
∑

y

PY (y) ln PY (y), (53)

where PY denotes the probability distribution of Y . A tradi-
tional interpretation is in the context of sending signals to
communicate the results of repeated independent samples of
Y . H (Y ) is proportional to the average number of bits per
sample required to reliably encode the outcomes. Thus, the
entropy reduces to a single number the uncertainty about Y
codified by its probability distribution.

If X is a second random variable, then conditional entropy
and mutual information are of interest. The entropy of Y
conditional on X having value x is simply the entropy of the
conditional distribution

H (Y |X = x) = −
∑

y

PY |X=x(y) ln PY |X=x(y), (54)

PY |X=x being the conditional distribution of Y , given that X
takes value x. The entropy of Y conditional on X (not a
particular outcome) is then the expectation of Eq. (54):

H (Y |X ) =
∑

x

PX (x)H (Y |X = x)

= −
∑

x,y

PY,X (y, x) ln PY |X=x(y). (55)

In the coding context, if (X,Y ) is sampled jointly and the X
outcome is transmitted, then we need an additional H (Y |X )
bits per sample to reliably communicate Y as well. It is in-
tuitively clear then that H (Y ) ! H (Y |X ), and the difference
H (Y ) − H (Y |X ) ought to represent the average amount of
information X carries about Y .

We turn that into a definition. The mutual information
between X and Y is

I(X :Y ) = H (Y ) − H (Y |X )

= H (X ) + H (Y ) − H (X,Y )

=
∑

y,x

PY X (y, x) ln
PY X (x, y)

PY (y)PX (x)

=
∑

y,x

P(y)P(x)
P(y, x)

P(y)P(x)
ln

P(y, x)
P(y)P(x)

. (56)

Manipulation of the definitions produces the second and third
right-hand expressions, from which it is clear that mutual
information is actually symmetric in its arguments, justifying
the name.

In the following, we will use simplified notation as much as
possible, as illustrated in the final line of Eq. (56), relying on
context for the proper reading. Mostly, we are concerned with
two variables X and Y , or X0 and XL, two variables along a
chain, and will systematically use the dummy variables x and
y for their values. We will instead use the subscript position
PL to indicate separation along a chain, or its length.

B. Mutual information and connected correlators

Mutual information has not been a concern of statistical
mechanics nearly as much, or for such a long time, as correla-
tion functions and connected correlation functions. We prove
here a general abstract result about asymptotics of mutual in-
formation which will be applied in the following subsections.

Let P be a probability distribution for a pair (Y, X ) of
discrete random variables, and define + by

P(y, x)
P(y)P(x)

= 1 + +(y, x). (57)

Then, using the notation δx(X ) for the function which evalu-
ates to one in case X = x, otherwise zero,

C(y, x) := +(y, x)P(y)P(x)

= P(y, x) − P(y)P(x)

= 〈δy(Y )δx(X )〉 − 〈δy(Y )〉〈δx(X )〉
= 〈δy(Y ); δx(X )〉 (58)

is a connected correlation function; the final rewriting ex-
plicitly claims as much. In fact, all connected correlation
functions can be built from these:

〈 f (X ); g(Y )〉 =
∑

y,x

f (x)g(y)C(y, x).

1. General asymptotics

Now, assume a family of probability distributions PL,
where L can be distance between two sites in a chain, or
the length of a chain (among other things), and suppose the
connected correlators Eq. (58) tend to zero as L → ∞. This
does not imply that +(y, x) tends to zero unless P(x) and P(y)
remain bounded away from zero. That condition, however, is
met in the Perron-Frobenius scenario, and then C(y, x) and
+(y, x) have the same asymptotic behavior.

Lemma V.1. Let (PL : L ∈ N ) be a family of probability
distributions for the pair (Y, X ), with corresponding +L ac-
cording to Eq. (57), and assume that +L(y, x) → 0 for every
x and y. Then,

I(Y :X ) ≈ 1
2 〈+L(Y, X )2〉. (59)

The expectation here, 〈 〉, can be with respect to either PL or
the product of the marginals, since the difference is O(+).

Proof. From the definition Eq. (57) of +, and Eq. (56) for
mutual information,

I(X :Y ) =
∑

P(y)P(x){[1 + +(y, x)] ln[1 + +(y, x)]}.
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Now, observe that

[1 + +(y, x)] ln[1 + +(y, x)] = + + 1
2+2 + · · · ,

while
∑

y,x

P(y)P(x)+(y, x) =
∑

y,x

P(y, x) −
∑

y,x

P(y)P(x) = 0.

#

C. Ring-to-ring mutual information

Now we consider the mutual information between sites
separated by L in an infinite chain, under the Perron-Frobenius
condition. We use notation introduced in Sec. II.

The probability of configuration x at a site is

P(x) = 〈θ0|x〉〈x|e0〉 = 〈x|Q0|y〉. (60)

For the product, we can do a swap:

P(y)P(x) = 〈y|Q0|y〉〈x|Q0|x〉 = 〈y|Q0|x〉〈x|Q0|y〉. (61)

To see this equality, recall that Q0 = |e0〉〈θ0|, write
〈y|Q0|x〉 = 〈y|e0〉〈θ0|x〉, and so on. The joint probability of
configurations x and y at separation L is

PL(y, x) := P(Xn+L = y & Xn = x)

= 〈θ0|y〉 〈y|T
L|x〉

λL
0

〈x|e0〉

= 〈x|Q0|y〉〈y|Q0 + SL|x〉. (62)

Putting these together, the connected correlation is

CL(y, x) = PL(y, x) − P(y)P(x)

= 〈x|Q0|y〉〈y|SL|x〉. (63)

Also,

+L(y, x) = 〈y|SL|x〉
〈y|Q0|x〉

. (64)

Finally, applying Lemma V.1,

I(XL :X0) ≈ 1
2

∑

y,x∈X

〈x|Q0|y〉
〈y|Q0|x〉

〈y|SL|x〉2. (65)

D. End-to-end mutual information

End-to-end mutual information with open boundary condi-
tions in the Perron-Frobenius scenario requires more intricate
manipulation, but it is in principle straightforward. Here, L is
the length of the chain. Apart from the decomposition T =
Q0 + S, the critical point in the calculations is that 〈y|Q0|x〉 >
0 for all y, x ∈ X . For example, the probability that the con-
figuration is x at the initial or “top” end of the chain is (recall
|1̄〉 =

∑
x∈X |x〉)

PL(x) = 〈1̄|T L|x〉
〈1̄|T L|1̄〉

= 〈1̄|Q0|x〉 + 〈1̄|SL|x〉
〈1̄|Q0|1̄〉 + 〈1̄|SL|1̄〉

= 〈1̄|Q0|x〉
〈1̄|Q0|1̄〉

(
1 + 〈1̄|SL|x〉

〈1̄|Q0|x〉
− 〈1̄|SL|1̄〉

〈1̄|Q0|1̄〉

)
+ O(S2L ),

where S in O(S2L ) stands in for the spectral radius of S. In
similar fashion, we obtain the probability that the terminal, or
bottom, end has configuration y as

PL(y) = 〈y|Q0|1̄〉
〈1̄|Q0|1̄〉

(
1 + 〈y|SL|1̄〉

〈y|Q0|1̄〉
− 〈1̄|SL|1̄〉

〈1̄|Q0|1̄〉

)
+ O(S2L ),

and the joint probability of x and y at the ends as

PL(y, x) = 〈y|T L|x〉
〈1̄|T L|1̄〉

= 〈y|Q0|x〉
〈1̄|Q0|1̄〉

(
1 + 〈y|SL|x〉

〈y|Q0|x〉
− 〈1̄|SL|1̄〉

〈1̄|Q0|1̄〉

)
+ O(S2L ).

For +(y, x), the ratio of the leading terms in PL(y, x) and
PL(y)PL(x) is needed. With the same trick as for Eq. (61), it is

〈y|Q0|x〉〈1̄|Q0|1̄〉
〈y|Q0|1̄〉〈1̄|Q0|x〉

= 1. (66)

Therefore,

+L(y, x) ≈ 〈y|SL|x〉
〈y|Q0|x〉

− 〈y|SL|1̄〉
〈y|Q0|1̄〉

− 〈1̄|SL|x〉
〈1̄|Q0|x〉

+ 〈1̄|SL|1̄〉
〈1̄|Q0|1̄〉

.

Finally, applying Lemma V.1 again,

I(XL :X0) ≈ 1
2

∑

y,x

〈y|Q0|x〉
〈1̄|Q0|1̄〉

+L(y, x)2. (67)

No possibility for general simplification is evident here, and
the result is considerably more complicated than that for ring-
to-ring mutual information in an infinite chain.

VI. END-TO-END MUTUAL INFORMATION ON
FINITE-LENGTH CYLINDERS

The previous section showed that end-to-end mutual infor-
mation I(XL :X0) is asymptotically proportional to |λ1/λ0|2L

in the Perron-Frobenius scenario. Finally, in this section, we
get down to the business of understanding its behavior for the
zero-temperature cylindrical TIAFM. Barring systems with
zero-energy modes, for which λ0 has algebraic multiplicity
two, we show that I(XL :X0) ≈ A(λ1/λ0)L, for some amplitude
A. Section VI B explains why MI cannot fall off any faster than
this, and Sec. VI C presents the more technical calculation
of the amplitude A, in the process showing that (λ1/λ0)L

gives the precise decay rate. These results are compared to
direct numerical calculations which reveal that the asymptotic
regime is reached already at L equal to two or three times the
circumference C. Section VI D then gives an argument like
that of Sec. VI B, showing that I(XL :X0) ∼ L−2 for systems
with zero-energy modes and the conclusion is again confirmed
with direct numerical calculation.

Before any of that, we need to understand λ0 and λ1. Since
T has the same eigenvalues as T0, this can be addressed
by an examination of noninteracting fermions. Section VI A
shows that the lowest-energy excitation are either of two-
particle (pp) or two-hole (hh) type, rather than particle-hole
type. This provides a simple explanation of the period-three
oscillation of the decay rate (see Table I). If, somehow, the
lowest energy excitations were of particle-hole type, then the
Perron-Frobenius behavior |λ1/λ0|2L (note, 2L rather than L)
would result.
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TABLE I. fundamental energy gaps +E of T0 and correspond-
ing excitation types. “hh” and “pp” indicate excitations involving
removal (addition) of two particles. Energies are reported in units of
vF · δk = π

√
3/C, according to a linearized approximation. Due to

the strict convexity of ε(k), energies reported for hh (pp) excitations
are overestimates (underestimates), improving as C → ∞. There is
only one cylinder with C ! 3 for which the linearized approximation
(with convexity tie-breaker) leads to an incorrect conclusion: C = 5
and odd N has exactly degenerate hh and pp excitations.

N parity Even Odd

C mod 3 0 1 2 0 1 2
Excitation type hh pp hh hh/pp hh pp
C+E/(π

√
3) 1 1/3 1/3 0 2/3 2/3

A. Energy gaps

Recall that according to Eq. (17), allowed single-particle
momenta satisfy

k
δ

∈
{
Z, N odd,

Z + 1
2 , N even,

(68)

where δ = 2π/C is the finesse of the momentum spectrum.
The maximum eigenvalue λ0 of T0 is e−E0 , where E0 is the en-
ergy of the filled Fermi sea, with every negative-energy mode
occupied. Linearizing the spectrum near the Fermi momentum
±kF = ± 2π

3 gives a minimum particle-hole excitation energy
vF δk, where vF = dε/dk|kF =

√
3/2 is the Fermi velocity.

For some 0 < α < 1, kF is αδk above the highest negative-
energy mode. A minimal energy two-hole excitation (removal
of two particles) costs energy 2αvF δk, while a minimal two-
particle excitation costs 2(1 − α)vF δk. As long as α += 1

2 ,
one of these costs less energy than a particle-hole excitation,
specifically, the two-hole (hh) excitation if α < 1

2 , and the
two-particle (pp) excitation, if α > 1

2 . If α = 1
2 , then there is

a three-way tie, in linearized approximation. Considering the
positive curvature of the dispersion curve ε(k), however, the
hh excitation gains an advantage. The possibility of α very
slightly greater than 1

2 need not concern us, as it will not arise.
The linearized approximation is a priori appropriate for large
circumference C. Its predictions fail only in the case C = 5,
odd N , where the hh and pp excitations are degenerate.

Now we will examine which case arises according to C and
N parity. Write

C = 3m + p, m, p ∈ N. (69)

Then, for odd N , Eq. (68) tells us that α in the above
discussion is

kF

δk
− m =






0 p = 0
1
3 p = 1
2
3 p = 2

(70)

This gives us three entries in Table I. The first case is the
special one of zero-energy modes, with a degenerate largest

eigenvalue. For even N , α is

kF

δk
−

(
m + 1

2

)
=






− 1
2 p = 0

− 1
6 p = 1

+ 1
6 p = 2

, (71)

providing the other three entries.

B. Lower bound from data-processing inequality

Combining the information we now have about the nature
of the eigenstates of T with a basic tool of information the-
ory called the data-processing inequality [4], we can show
that I(XL :X0), the end-to-end mutual information with open
boundary conditions, obeys

I(XL :X0) " (λ1/λ0)L. (72)

It should seem plausible, and is true, that “"” can be replaced
by “∼,” but that requires a more delicate analysis carried out
in the following subsection.

The data-processing inequality says that if X ′ is a function
of X , then I(X ′ :Y ) " I(X :Y ). The intuitive ground for this
is simple: I(X ′ :Y ) measures the information X ′ carries about
Y , but X carries at least as much, since it determines X ′.
Now, we define random variables S0 and SL, taking values in
{LT, EQ, GT}. S0 is determined by X0 according to

S0 =






LT N (X0) < N0
EQ N (X0) = N0
GT N (X0) > N0

(73)

and SL in the same way from XL. Then, by two applications of
the data-processing inequality [4], and using symmetry of the
mutual information,

I(X0 :XL ) ! I(X0 :SL ) ! I(S0 :SL ). (74)

We now show how to get Eq. (72) from this.
Consider the case that the eigenvalue λ1 of T0 corresponds

to a two-hole excitation, and use the first form for mutual
information in Eq. (56) to obtain

I(S0 :SL ) =
∑

x

P(S0 = x)[H (SL ) − H (SL|S0 = x)]

! P(S0 = LT)[H (SL ) − H (SL|S0 = LT)]

= P(S0 = LT)H (SL ) ∼
(

λ1

λ0

)L

.

Passage to the final line uses that N (XL ) " N (X0). For the
last step, H (SL ) tends to some nonzero value as L → ∞, and
P(S0 = LT) ∼ (λ1/λ0)L because λ1 corresponds to a two-hole
excitation. Therefore, we have the claimed bound in this case.

The case that λ1 corresponds to a two-particle excitation
proceeds similarly, but with the roles of the ends swapped,
because we need to use that SL = GT implies S0 = GT:

I(S0 :SL ) ! P(SL = GT)H (S0) ∼
(

λ1

λ0

)L

.
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C. Open boundary end-to-end mutual information: No
zero-energy modes

Now we show that

I(XL :X0) ≈ A
(

λ1

λ0

)L

(75)

and calculate A.

1. Categories of end configurations

In the treatment of the asymptotic behavior of mutual in-
formation

I(XL :X0) =
∑

y,x

PL(y, x) ln
PL(y, x)

PL(y)PL(x)
(76)

in the Perron-Frobenius scenario, given in Sec. V, a crucial
role was played by the fact that for every x and y,

+(y, x) = PL(y, x)
PL(y)PL(x)

− 1 (77)

tended to zero as L → ∞. Now, for the zero-temperature
cylindrical TIAFM, this continues to hold in case N (y) "
N0 " N (x), because 〈y|Q0|x〉 += 0 in that case. The argument
is just the same as for Eq. (66).

However, in case N0 < N (y) " N (x), 〈y|Q0 = 0, so that

PL(y, x) ≈ 〈y|SL|x〉
〈1̄|Q0|1̄〉

≈ 〈y|eN (y),0〉〈θN (y),0|x〉
〈1̄|Q0|1̄〉

(
λN (y),0

λ0

)L

, (78)

PL(y, x)
PL(y)

≈ 〈y|SL|x〉
〈y|SL|1̄〉

≈ 〈θN (y),0|x〉
〈θN (y),0|1̄〉

, (79)

and

PL(x) ≈ 〈1̄|Q0|x〉
〈1̄|Q0|1̄〉

= 〈θ0|x〉
〈θ0|1̄〉

. (80)

Together, Eqs. (79) and (80) yield

PL(y, x)
PL(y)PL(x)

≈ 〈θN (y),0|x〉
〈θN (y),0|1̄〉

〈θ0|1̄〉
〈θ0|x〉

. (81)

Similarly, in case N (y) " N (x) < N0, Q0|x〉 = 0,

PL(y, x) ≈ 〈y|eN (x),0)〉〈θN (x),0)|x〉
〈1̄|Q0|1̄〉

(
λN (x),0

λ0

)L

, (82)

and

PL(y, x)
PL(y)PL(x)

≈ 〈y|eN (x),0〉
〈1̄|eN (x),0〉

〈1̄|e0〉
〈y|e0〉

. (83)

Since Eqs. (81) and (83) are nonzero and bounded, their
logarithms are bounded. Therefore, in these cases, the contri-
bution to the sum in Eq. (76) is of the same order as PL(y, x).
Thus, if we wish to calculate I(XL :X0) to order (λ1/λ0)L, then
we need only consider y with 〈y|e1〉 += 0 or x with 〈θ1|x〉 += 0,
in addition to the first class N (y) " N0 " N (x). However, the
contribution of this class vanishes to this order, as we show
next.

Lemma VI.1.

∑

N (y)"N0"N (x)

PL(y, x) ln
PL(y, x)

PL(y)PL(x)
∼

(
λ1

λ0

)2L

.

Proof. As in Lemma V.1, up to order (λ1/λ0)2L, the sum is
∑

N (y)"N0"N (x)

PL(y)PL(x)+L(y, x)

=
∑

[PL(y, x) − PL(y)PL(x)]

= PL{[N (y) " N0] ∩ [N0 " N (x)]}
− PL[N (y) " N0]PL[N0 " N (x)].

Now, we appeal a small general probabilistic identity:

P(A ∩ B) − P(A)P(B) = P(Ac ∩ Bc) − P(Ac)P(Bc). (84)

Given that, our sum is asymptotically equal to

PL[(N0 < N (y)] ∩ [N (x) < N0)]

− PL[N0 < N (y)]PL[N (x) < N0].

However, the first term here is zero, while both PL[N0 <
N (y)] and PL[N (x) < N0] are of order (λ1/λ0)L.

To finish, we just need to demonstrate the identity Eq. (84):

P(A ∩ B) − P(A)P(B)

= P(B) − P(Ac ∩ B) − P(B)(1 − P(Ac))

= −[P(Ac ∩ B) − P(Ac)P(B)].

Repeat, with B and Ac in the roles of A and B.

2. The amplitude

To recapitulate: Section VI B showed that I(XL :X0) is of
order (λ1/λ0)L at least, while Lemma VI.1 shows that pairs
(y, x) with N (y) " N0 " N (x) contribute nothing to that or-
der. Estimates Eqs. (81) and (83) show that the contribution of
other pairs is of the same order as PL(y, x). Eq. (78) or (80)
shows which (y, x) pairs to retain.

In case λ1 corresponds to a two-particle excitation, the
relevant contributions come from N0 + 2 = N (y) " N (x).
We have only to put together the expressions from Eqs. (78)
and (81):

A =
∑

N (y)=N0+2
N (x)!N (y)

〈y|e1〉〈θ1|x〉
〈1̄|e0〉〈θ0|1̄〉

ln
〈θ1|x〉〈θ0|1̄〉
〈θ1|1̄〉〈θ0|x〉

. (85)

In case λ1 corresponds to a two-hole excitation, use
Eqs. (82) and (83) instead:

A =
∑

N (x)=N0−2
N (y)"N (x)

〈y|e1〉〈θ1|x〉
〈1̄|e0〉〈θ0|1̄〉

ln
〈y|e1〉〈1̄|e0〉
〈1̄|e1〉〈y|e0〉

. (86)

These results for the amplitude A for C up to 15 are plotted
(data points) in Fig. 4. Within each congruence class of C
modulo 3 and parity of N , the calculated values appear to be-
have nearly exponentially in C. In contrast to the dependence
of λ1/λ0 on C mod 3, we have no explanation for this.
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3k

3k + 1

3k − 1

even

odd

N

N

C

A(C)

FIG. 4. Amplitudes A(C) [see Eqs. (85) and 86)] of the asymp-
totic decay of end-to-end mutual information [9]. The lines are
empirical fits revealing an approximately exponential decay of A with
circumference C for fixed residue class C mod 3 and N parity.

3. Exact numerical calculations

Compared to Exact numerical calculations of the end-
to-end mutual information are compared to the asymptotic
formulas in Fig. 5. The plots show that the asymptotic regime
is attained already when L is two or three times C. The data
show that I(XL :X0) always approaches the asymptotic value
from above. Since terms in Eq. (76) can be negative as well as
positive, it is not clear why this is the case.

D. Systems with zero-energy modes

Finally, we analyze systems with zero-energy modes. The
exceptional nature of these systems with regard to end-to-end
mutual information is demonstrated in Fig. 6, which shows
numerical results for the rescaled mutual information. Evi-
dently, I(XL :X0) decays not exponentially, but as L−2. The
task of this section is to derive this behavior.

According to Proposition IV.1, the partition function of a
length-L system with open boundary conditions is of order
LλL

0 . PL(y, x) tends to zero exponentially if N (y) " N (x) <
N0 − 2 or N0 < N (y) " N (x), tends to zero as 1/L if N (y) =
N (x) is N0 − 2 or N0, and tends to a nonzero value if N (y) "
N0 − 2 < N0 " N (x). Analysis of the first case is very similar
to that for systems without zero modes, so we shall not go into
details. For such a pair (y, x), PL (y,x)

PL (y)PL (x) is bounded, hence its
contribution to the mutual information is of order PL(y, x),
that is, exponentially small.

The important configurations, then, are those where
N (y) " N0 and N0 − 2 " N (x). As we did for systems with-
out zero-energy modes, we introduce reduced variables

S0 =
{

LO N (X0) " N0 − 2
HI N (X0) ! N0

(87)

FIG. 5. Ratio of the end-to-end mutual information I(XL :X0)
to the leading behavior A(C)e−+εL , for cases without zero-energy
modes and 3 " C " 11.

and similarly SL defined in terms of XL. Since the data pro-
cessing inequality assures that

I(XL :X0) ! I(SL :S0), (88)

we aim to show that I(SL :S0) ∼ L−2. To that end, we need
to determine the asymptotic joint distribution of the random
variables SL and S0. The partition function is dominated by
configurations with N equal in the bulk to either N0 or N0 − 2.
These have the same entropy density, that is, correspond to the
same eigenvalue of T0. However, one gains additional entropy
with the possibility of inserting a transition (“domain wall”)
between the two. It can go in any of order L locations, not
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FIG. 6. L2IL (X0 :XL ), the end-to-end mutual information multi-
plied by L2 for the exceptional cases of odd-N , C ∈ 3N, which have
zero-energy modes [9].

be present at all, in which case N (y) = N (x) is either N0 or
N0 − 2. Simply counting possibilities therefore leads to

PL(SL = HI, S0 = LO) = o(L−1),

PL(SL = HI, S0 = HI) = c
L + o(L−1),

PL(SL = LO, S0 = LO) = c
L + o(L−1),

PL(SL = LO, S0 = HI) = 1 − 2 c
L + o(L−1). (89)

According to the following Lemma, this leads to the conclu-
sion I(XL :X0) ! I(SL :S0) ≈ (c/L)2, as required.

Lemma VI.2. Suppose a pair (U,V ) of dichotomous ran-
dom variables has joint and marginal probabilities as in the
table

δ 1 − 2δ 1 − δ
0 δ δ
δ 1 − δ

Then,

I(U :V ) = δ2 + O(δ3). (90)

Proof. Compute:

I(U :V ) =
∑

u,v

P(u, v) ln
P(u, v)

P(u)P(v)

= 2δ ln
1

1 − δ
+ (1 − 2δ) ln

1 − 2δ

(1 − δ)2

= (1 − 2δ) ln(1 − 2δ) − 2(1 − δ) ln(1 − δ).

#

VII. CONCLUSION

The three main inter-related themes in this paper have
been breakdown of the Perron-Frobenius scenario in one-
dimensional systems dominated by nonthermal disorder, the
use of mutual information to study correlations between com-
plicated elementary degrees of freedom, and the use of a

fermionic representation to extract detailed information about
the zero-temperature triangular Ising antiferromagnet on long
cylinders.

The Perron-Frobenius scenario characterizes such ba-
sic statistical mechanical properties of thermally disordered
one-dimensional systems as asymptotic behavior of correla-
tion functions, and as we have shown, mutual information.
Qualitatively different properties can result when the Perron-
Frobenius condition on the transfer matrix fails. A natural
way to obtain nontrivial transfer matrices for which that fail-
ure happens is through frustration-induced disorder. Thermal
disorder is completely excluded at zero temperature, but frus-
tration can still be the dominant effect over relatively long
length scales for low enough temperature. Cylindrical TIAFM
systems serve as an excellent model on which to study the
breakdown of the Perron-Frobenius scenario. The TIAFM is
of great interest for its own sake, and can be studied in great
detail by use of a powerful mapping to a system of fermions.
Considered as a one-dimensional chain, each site of which
is a ring of spins, the “elementary” degrees of freedom are
very complicated. Traditional correlation function techniques
are not adequate for this situation. We therefore use mutual
information instead as the primary tool with which to describe
correlations. Coupled with the fermionic representation, we
are able to obtain asymptotic behavior of end-to-end mutual
information. Phenomena which are contrary to the Perron-
Frobenius (PF) scenario are thereby uncovered, such as decay
lengths half what that scenario predicts, or even infinite. Other
features, which are not contrary to the PF scenario, but are
nevertheless highly surprising, such as oscillation of the mu-
tual information decay length with a period of three in the
cylinder circumference, are also completely explained. Some
puzzles remain in the details of the results, such as the cluster-
ing seen in the curves of Fig. 4 and the fact that the asymptote
is always approached from above in Fig. 5.

Direct experimental study of mutual information is very
demanding, since one needs access to microstate details. Sys-
tems where the relevant degrees of freedom are molecular
or atomic scale are therefore very difficult to access. Meso-
scopic systems such as artificial spin ice or colloidal systems,
however, seem relatively promising. It may even be possible
to fabricate fairly precise realizations of the specific model
studied here.
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